A New Local Adaptive Thresholding Technique in Binarization
نویسندگان
چکیده
Image binarization is the process of separation of pixel values into two groups, white as background and black as foreground. Thresholding plays a major in binarization of images. Thresholding can be categorized into global thresholding and local thresholding. In images with uniform contrast distribution of background and foreground like document images, global thresholding is more appropriate. In degraded document images, where considerable background noise or variation in contrast and illumination exists, there exists many pixels that cannot be easily classified as foreground or background. In such cases, binarization with local thresholding is more appropriate. This paper describes a locally adaptive thresholding technique that removes background by using local mean and mean deviation. Normally the local mean computational time depends on the window size. Our technique uses integral sum image as a prior processing to calculate local mean. It does not involve calculations of standard deviations as in other local adaptive techniques. This along with the fact that calculations of mean is independent of window size speed up the process as compared to other local thresholding techniques.
منابع مشابه
Binarization and Thinning of Fingerprint Images by Pipelining
Two critical steps in fingerprint recognition are binarization and thinning of the image. The need for real time processing motivates us to select local adaptive thresholding approach for the binarization step. We introduce a new hardware for this purpose based on pipeline architecture. We propose a formula for selecting an optimal block size for the thresholding purpose. We also present in thi...
متن کاملA Combination of Laplacian Energy, Global and Adaptive Techniques for Degraded Document Image Binarization
Many document image binarization algorithms have previously been proposed for enhancing the performance of degraded document image binarization. This paper reviews algorithms for document image binarization. All of the algorithms have some advantages and disadvantages. To remove the drawbacks in this paper a combined approach is proposed that first combines different types of global and local t...
متن کاملAdaptive document binarization - a human vision approach
This paper presents a new approach to adaptive document binarization, inspired by the attributes of the Human Visual System (HVS). The proposed algorithm combines the characteristics of the OFF ganglion cells of the HVS with the classic Otsu binarization technique. Ganglion cells with four receptive field sizes tuned to different spatial frequencies are employed, which, adopting a new activatio...
متن کاملImplementation of Bernsen’s Locally Adaptive Binarization Method for Gray Scale Images
In digital image processing, binarization (two-level thresholding) is a commonly used technique for image segmentation. It is the process of converting a gray scale image to a binary image. Furthermore, binarization methods are divided into two groups as global binarization and locally adaptive binarization. A number of binarization techniques have been proposed over the years. Bernsen’s method...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1201.5227 شماره
صفحات -
تاریخ انتشار 2011